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An Accurate Solution of the Cylindrical
Dielectric Resonator Problem

MAREK JAWORSKI anxpD MARIAN W. POSPIESZALSKI

Abstract—A cylindrical sample of low-loss high-¢, dielectric placed
between two parallel conducting plates perpendicular to the sample axis
forms a microwave resonator. A new method of determining the field
distribution and resonant frequency of this resonator is presented. By this
method the solution is obtained in a form of successive approximations
converging to the exact solution. The analysis is outlined in detail for the
TEg,; mode and compared with previously published approximate calcula-
tions and experimental data.

I. INTRODUCTION

HE AVAILABILITY of low-loss high-¢, tempera-

ture compensated microwave ceramics [1]-[3] allows
the construction of dielectric resonators with Q factors
and temperature stabilities comparable with those of invar
cavities [1],[3]. The use of dielectric resonators in micro-
wave circuits can be expected to expand rapidly since they
are compatible with different forms of waveguide struc-
tures [3],[4], and they also offer the possibility of integra-
tion with different microwave semiconductor devices.

A dielectric resonator structure commonly used in prac-
tical microwave circuits is that composed of a cylindrical
dielectric sample placed between two parallel conducting
plates perpendicular to the sample axis. There have been
several approximate calculations of the resonant frequen-
cies of this structure’s TE modes [3],[5],[6],[16]. This
paper presents an accurate solution of this problem under
the following assumptions:

1) the dielectric sample is isotropic and lossless,

2) the plates are perfectly conducting,

3) the distance between the conducting plates is
smaller than half of the free-space wavelength cor-
responding to the resonant frequency of the resona-
tor being calculated.

The third assumption is necessary to assure that the
resonant frequencies being calculated are real numbers.
Without this assumption, the resonant frequencies could
be complex numbers due to radiation, as it is for the
dielectric resonator in free space [7],[8].

The analytical approach taken here is accurate in the
sense that the solution is obtained in the form of succes-
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Fig. 1. A dielectric resonator structure.

sive approximations converging to the exact solution.
Therefore, it allows precise computations of both resonant
frequency and field distribution to any desired accuracy.

II. METHOD OF ANALYSIS

The analytical approach is based on the variational
method of Weinstein for the approximate calculation of
eigenvalues [9]. It recently has been used in the investiga-
tion of reentrant cylindrical cavities [10],[11]. For the
resonant structure of Fig. 1 the method consists of the
following;:

1) dividing the space between the metallic plates into
two regular regions: I) r<a, II) r >a,

2) solving Helmholtz equation within each region,

3) matching the resulting fields on the surface r=a.

We shall analyze the axially symmetric TE,; mode
which is the most important mode for practical applica-
tions. Although region I (r<a) is inhomogeneous along
the z axis, the analytical solution will be determined in the
form of a Green’s function. It may be possible to investi-
gate other modes in a similar manner.

Let H,(a,z) be the z-component of the magnetic field at
the surface r=a. According to the equivalence principle
[12], one may assume the electric field in each region to be
excited by surface currents equivalent to the magnetic
field H,(a,z). Therefore,

L
Ei(r,z)=— ikOij; GYr,a,z,z2YH (a,2’)dz (la)
EMr,z)= ikOij(;LlG"(r, a,z,z’)H,(a,z’)dz’  (1b)

where L' is L+ L+ L,,G(r,r',z,z’) is the two-dimensional
Green’s function for the Helmholtz operator, H,(a,z’) is
the z-component of the magnetic field at the surface r=a,
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ko=(2m/Ay) is the free-space propagation constant, and Z;
is the free-space wave impedance.
In particular, for r=a one obtains

Edl,(a,z) =R'H,(a,z) (2a)
Ea,z)=—R"H/(a,z) (2b)

in which R' and R denote the integral operators defined
by (1). The continuity condition for the electric field
tangential to the surface »=a requires that

E,—E)'=0 (3a)

or

R'H,(a,z)+ R"H (a,z)=0. (3b)

The integral equation (3b) is the basic equation from
which both the resonant frequency and the field distribu-
tion will be found by a procedure similar to the method of
moments [13].

Let {y,} denote an infinite set of testing functions,
complete in the interval [0, L’]. It may be shown that (3b)
is equivalent to the following infinite set of equations:

(R'H/(a,z)  ¢>+{R"H/(a,z) Y =0

where j=1,2,3,--- and {} denotes the inner product.
The unknown magnetic H,(a,z) may be expressed in
terms of the functions {¢,}:

(4)

o0

H,(a,2)= 3 c4(2)

i=1

)

where ¢; are coefficients to be determined and {¢;} is a set
of functions complete in the interval [0, L’]. The substitu-
tion of (5) into (4) results in the infinite set of homoge-
neous linear equations of the general form

[oe]

2 cz[<RI¢z"l/j>+<RH¢19¢j>]=O9 .]= 1’2’3,' o

i=

(6)

A nontrivial solution for ¢; exists only if the determinant
of the set (6) equals zero. Thus the final equation for the
resonant frequency can be written as

det [ W]=0 )
where the elements of the matrix [ W] are given by
Wy=<RI¢i %> +<RH¢i ’J/j> (8)

Once the resonant frequency is found from (7), the set
of linear equations (6) can be solved for ¢, to determine
the field H,(a,z) from (5). Consequently, the electric field
in the whole region under consideration can be de-
termined from (1).

The exact solution is obtained as the matrix [ W] dimen-
sion tends to infinity. Neglecting the terms for i,j>n
results in an approximate solution. Thus any given ac-
curacy can be obtained by appropriate choice of n.
According to the general features of Weinstein’s varia-
tional method, the consecutive expansion of the matrix
[W] dimension n yields a monotonically increasing
sequence of approximations. In other words, any ap-
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proximate solution provides a lower bound for the true
resonant frequency. That is,

f(()l)<j(()2)<... <j(()")...<f0 (9)

where f; is the exact resonant frequency, and f§” is the
approximate solution of (7) for i,j <n.

II1.

We shall compute the resonant frequency of the TE,;
mode of the resonant structure, shown in Fig. 1, for the
case L, = L,. Because of the symmetry of the problem it is
convenient now to move the origin of the coordinate
system along the z axis to the point z=(1/2)L’, and to
analyze the resonant system in the interval [0,(1/2)L+
L,]. The function sets {¢;} and {,} have been chosen to
be the same, and have the form

#i(2) = () =) /% cos (%(21(— l)z), k=1,2,3,---
(10)

where L'=L+2L,. Each member of the function set

matches the boundary conditions and the set is complete

for even functions. The Green’s functions for regions I

and II are given in the Appendix. Thus substituting (10) in

(8) one obtains

diagonal elements:

NUMERICAL RESULTS

_ L Ji(x) q sin (y,L)
Wi = xJo(x,) v;.L
___L 11(yi) . sin (YxL) Kl(yi)
+(1 r )yilo(yi) [1 'Yi(Ll_—L) yiKO(yi)

_8(e—1’k§ & (P,4,+B)Q,4,—B)

a2L’ m=1 (u,i + ,le)(v'%' + 712)(Pm + Qm)
(11a)
off-diagonal elements:
LA BABAT J(x)  L(»)
4 L, 7’2 - sz xxJO(xx) ytlo(yi)
8(e,— 1)’ks & 1
L o1 (g + ) (R + Y (P, + O,)

(P,.A,+B)(O,.4,—B)

i

(PmAj + B,')(QmA; - B.')
u,%, + sz

1.73,+yj2
(11b)

where, for k=1i,;:

L
Ay =cos (v, 7)

Xy =4a Verk(%_ ‘Ylf

T
Ye=Qk—17;

. L
B, =1y, sin (‘Yk?)

J’k=aVY/%—k3
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TABLE 1
Tue CompuTeD FREQUENCY OF THE TEj;; MODE VERSUS
DIMENSION 1 OF THE MATRIX [ W] FOR THE RESONATOR HAVING
D=1799 mm, L=2.14mm, L,/L=2.07,¢,=362

n i 2 3 4 5

fo
[GHz] 7.5519]7.7195|7.7524(7.7578(7.7583

n 6 7 8 9 10

[GI‘?Z] 77583(7.7584 (7.7585 |7 7585 |7.7585

and

P, =u, tanh (umg) Q,,=v, coth (v, L))

U, = vh,i —€.k2 O =Vh3, - k2

and A,, is mth root of the equation Jy(h,,a)=0,¢, is the
relative dielectric constant of the sample, J, is the Bessel
function of the first kind, and I,, K, are modified Bessel
functions of the first and second kind, respectively.

For sufficiently large values of m, the terms of the
infinite series in (11a) and (b) decrease as m ™’ and m~>,
respectively. This fast convergence of both series allows
the accurate evaluation of the matrix elements.

Expressions (11a) and (b) are valid for k,<y,, i.e., for
distances between conducting plates smaller than the half
of the free-space wavelength corresponding to the reso-
nant frequency of the structure. As pointed out earlier,
this case represents a closed-resonant system. As a result,
the Q factor of the resonator is infinite if the dielectric
losses are zero and the plates are perfectly conducting.

To illustrate the theory, the resonant frequencies of
several X-band cylindrical dielectric resonators which
have been previously investigated experimentally [3] were
computed. Since the value of »n for a given computational
accuracy depends on the geometry, and is not known a
priori, the computations were performed for successive
values of n until the fractional change in the computed
resonant frequency was less than 107°. For the cases
considered, this accuracy was obtained for values of n
between 8 and 10. An example of the numerical conver-
gence of method is shown in Table I. A comparison
between the resonant frequencies of the TE,; mode com-
puted by three different approximate methods, this
method, and the experimentally obtained data are shown
in Table II. The agreement between the accurate solution
and the experimental data is within the estimated ac-
curacy of the experimental data [3]. The resonant
frequencies computed using a magnetic-wall waveguide
model [5] are seen to be about 4-10 percent smaller than
the measured values. On the other hand, the dielectric
waveguide model [6] and its modification [3] is seen to
result in errors up to 7 and 3.5 percent, respectively. The
approximate method of Konishi et a/. has been evaluated
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Fig. 2. The distribution of the H, field component of the TE;; mode
at the surface r=q¢ and at r =0 for the resonator of Table I (D=2a=
7.99 mm, L=2, 14 mm, L,/ L=2.07, ¢,=36.2).

TABLE II
THE MEASURED AND COMPUTED RESONANT FREQUENCIES (TEy,4
MODE, STRUCTURE AS IN F1G. 1, Ly = L,, ¢, =36.2)

to [GHz]
D L Ly computed
[mm] | [mm] L ref ref | ret | this %
5 | 6 | [ |method|[3] *
406 | 515 | 0.568 | 10.09 [ 10.86 | 1082 | 1050 |10.48
603 | 416 (0820 | 742 | 83l 820 | 7.94 | 7.94
598 | 295 | 136 803} 916 | 894 | 86] 8.64
602 | 214 207 870 (1008 | .71 9.33 | 9.40
799 | 214 | 207 716 838 | 796 | 776 779

for the dielectric sample in free space [15], for which our
method cannot be directly applied. However, it has been
shown by Itoh and Rudokas [6] that the method of
Konishi er al. gives good agreement with their dieleciric
waveguide model.

The distribution of the H, field component (for r=0
and r=a) was computed in accordance with this new
method (see (5)) for the resonator of Table I. A graph of
this field is shown in Fig. 2. Note that H,(a) changes its
sign along z. Therefore, the magnetic field distribution in
the resonator for the TE,; mode is similar to the field
shown schematically in Fig. 3(c). For comparison, ihe
magnetic field distributions resulting from the magnelic-
wall waveguide model Fig. 3(a) and the dielectric wave-
guide model Fig. 3(b) are also shown.

Table III provides some further insight into the depen-
dence of the computed resonant frequency on different
parameters of the structure shown in Fig. 1 (compare [3}).
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Fig. 3. Comparison between the TE,;;-mode magnetic field distribu-
tions resulting from the magnetic wall waveguide model (a) [5] and the
dielectric waveguide model (b) [6] with the distribution in the real
resonator (c).

IV. CoNCLUSIONS

The analytical method presented in this paper allows,
for the first time, the determination of the resonant
frequencies and the field distributions of cylindrical-
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TABLE III
THE COMPUTED VALUES OF ( f,D)%, IN [GHz-cm[P+10° FoR
DiIFrFeReENT VALUES OF D/L, L,/ L, ¢,

L
Ll/L &r ( )
2.25 400 6.25
30 [0.8791 | 1.0616 | 1.2690
0.5
100 108949 | 1.0760 | 1.2829
30 {08272 [ 09703 | 1.1234
1.0
100 |0.8521 |0.9939 | 1.1470
APPENDIX

Using Friedman’s method [14], the Green’s function for
the region I is found to be of the following form:

et /
GY(r,r,z,2")= —2; > M
a Ji(h,,a)

m==1
where G,, is the one-dimensional Green’s function given
by

G, (z,z2') (Al

G, (2,2')= glm(zzjg2m(z,) ,

m

forz<z’ (A2)

(2,2)= 81m(2)82m(2)

dielectric resonators with arbitrarily small error. A de- G, , forz>z’ (A3)
tailed outline of this method for the TE,; mode has been Con
given. This mode is the most important one in practical and
Cp = Uy Op| Uy, sinh (3, L) sinh (0,,L;)+ 1, cosh (3u,L) cosh (v,Ly) ] (A4)
@ v,, cosh (u,,z), for0<z<3L
8iml2)= . .
' 0,, cosh (u,,L) cosh [vm(z—%L)]+um sinh (%u,L) sinh [vm(z—%L)], for ;L<z<L,+3L
u,, sinh vm(Ll+%L—z)], for 1L<z<L,+3L
g2m(z ) = [ (A5 )

applications of these resonators. The numerical calcula-
tions performed show that not only is the method com-
putationally practical, but also support the claimed 3.5
percent accuracy of the modified dielectric waveguide
model [3]. The computed field distribution of the TEg;
mode shows that the cross-sectional field distribution

L a2 & cos(v2) cos (v;2)
GH(I',I',Z,Z)=—L7 Ko(y) X

i=1

changes strongly along the z axis. This fact is of impor-
tance in the study of the interaction of the dielectric
resonator with a ferrite semiconductor device, or other,
resonator or waveguide system. Since this method allows
calculations with arbitrarily small errors, it can be used in
the measurement of complex permittivity of low-loss mi-
crowave insulators.

u,, cosh [um(%L~z)] sinh (v,,L,) +v,, cosh (v,,L,) sinh [um(%L——z)},

I:IO(J’:')KI(%’) +Ko()’i)11(%r)]K1(%r,),

[Io(yx')Kl(%r’)*‘Ko()’x)ll(%"’)]Kl(%r),

for0<z<3iL.

All the symbols were defined previously in the text.

The Green’s function for region II is derived in a
similar way under the condition ky<v, (or L'<1iAg). It
means that there is no radiation of electromagnetic energy
from this resonant structure. The function G has the
form

for r<r’
(A6)

for r>r.

All the symbols were defined previously in the text.
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Design of Microwave GaAs MESFET’s for
Broad-Band Low-Noise Amplifiers

HATSUAKI FUKUI, SENIOR MEMBER, IEEE

Abstract—As a basis for designing GaAs MESFET’s for broad-band
low-noise amplifiers, the fundamental relationships between basic device
parameters, and two-port noise parameters are investigated in a semiem-
pirical manner. A set of four noise parameters are shown as simple
functions of equivalent circuit elements of a GaAs MESFET. Each
element is then expressed in a simple analytical form with the geometrical
and material parameters of this device. Thus practical expressions for the
four noise parameters are developed in terms of the geometrical and
material parameters.

Among the four noise parameters, the minimum noise figure F, ., and
equivalent noise resistance R,, are considered crucial for broad-band
low-noise amplifiers. A low R, corresponds to less sensitivity to input
mismatch, and can be obtained with a short heavily doped thin active
channel. Such a high channel doping-to-thickness (N/4) ratio has a
potential of producing high power gain, but is contradictory to obtaining a
low F_;,. Therefore, a compromise in choosing N and g is necessary for
best overall amplifier performance. Four numerical examples are given to
show optimization processes.

I. INTRODUCTION

HE GaAs Schottky-barrier gate field effect transis-
tors (GaAs MESFET’s) have demonstrated excellent

noise and gain performance at microwave frequencies

Manuscript received August 14, 1978; revised January 15, 1979.
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through K band [1]. The excellent microwave performance
of GaAs MESFET’s is certainly related to their channel
properties. GaAs MESFET’s to be used for broad-band
low-noise amplifier applications, must have special re-
quirements on their channel properties for optimum per-
formance. The purpose of this paper is to investigate the
fundamental relationships between the noise and small-
signal properties, and the basic channel parameters of
GaAs MESFET’s. This information should be useful as a
basis for device design.

II. REPRESENTATION OF NOISE PROPERTIES

A. Noise Parameters

From the circuit point of view, the GaAs MESFET can
be treated as a black box of noisy two port. The noise
properties of such a black box are then characterized by a
set of four noise parameters in the binomial form [2]. A
derivation of this form can be written as

2 2
F=F +& (Rss_Rop) +(Xss_Xop)

. )
min 2 2 N
R, RI+X]
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