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An Accurate Solution of the Cylindrical
Dielectric Resonator Problem
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Aimtmct-A cylinrfrfcaf sample of low-loss fdgb-c, dielectric placed

between two paraflel conducting platea perpendicular to the sample axis

forms a microwave resonator. A new method of dete-f the field

dfatribution and resonant frequency of this resonator is presented. By this

method the solution is obtained in a form of successive approximations

converging to the exaet solution. The analysis is outfffed in detail for the

T& mode and compared with previously published approximate cafcuia-

tions aad experfmeutaf data.

I. INTRODUCTION

T HE AVAILABILITY of low-loss high-~, tempera-

ture compensated microwave ceramics [ 1]–[3] allows

the construction of dielectric resonators with Q factors

and temperature stabilities comparable with those of invar

cavities [1], [3]. The use of dielectric resonators in micro-

wave circuits can be expected to expand rapidly since they

are compatible with different forms of waveguide struc-

tures [3], [4], and they also offer the possibility of integra-

tion with different microwave semiconductor devices.

A dielectric resonator structure commonly used in prac-

tical microwave circuits is that composed of a cylindrical

dielectric sample placed between two parallel conducting

plates perpendicular to the sample axis. There have been

several approximate calculations of the resonant frequen-

cies of this structure’s TE modes [3], [5], [6], [ 16]. This

paper presents an accurate solution of this problem under

the following assumptions:

1)

2)
3)

the dielectric sample is isotropic and lossless,

the plates are perfectly conducting,

the distance between the conducting plates is

smaller than half of the free-space wavelength cor-

responding to the resonant frequency of the resona-

tor being calculated.

The third assumption is necessary to assure that the

resonant frequencies being calculated are real numbers.

Without this assumption, the resonant frequencies could

be complex numbers due to radiation, as it is for the

dielectric resonator in free space [7], [8].

The analytical approach taken here is accurate in the

sense that the solution is obtained in the form of succes-
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Fig. 1. A dielectric resonator structure.

sive approximations converging to the exact solution.

Therefore, it allows precise computations of both resonant

frequency and field distribution to any desired accuracy.

II. METHOD OF ANALYSIS

The analytical approach is based on the variational

method of Weinstein for the approximate calculation of

eigenvalues [9]. It recently has been used in the investiga-

tion of reentrant cylindrical cavities [10], [ 11]. For the

resonant structure of Fig. 1 the method consists of the

following:

1) dividing the space between the metallic plates intt)

two regular regions: I) r <a, II) r >a,

2) solving Hehnholtz equation within each region,

3) matching the resulting fields on the surface r= a.

We shall analyze the axially symmetric TEO1a mode

which is the most important mode for practical applica-

tions. Although region I (r< a) is inhomogeneous alon~;

the z axis, the analytical solution will be determined in the

form of a Green’s function. It may be possible to investi-

gate other modes in a similar manner.

Let Hz(a, z) be the z-component of the magnetic field at
the surface r= a. According to the equivalence principlti

[12], one may assume the elect~ic field in each region to bc

excited by surface currents equivalent to the magnetic

field Hz(a, z). Therefore,

J(E~(r,z) = – ikOZf U G1 r,a, z,z’)Hz(a, z’)dz’ (la]}

J“ (E#(r, z) = L%ozf “ “G1l r,a, z,z’)Hz(a, z’)dz’ [lb’Jl

where L’ is L,+ L + Lz, G(r, r’, z, z’) is the two-dimensional.

Green’s function for the Hehnholtz operator, Hz(a, z’) is

the z-component of the magnetic field at the surface r = a,,
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k.= (27r/Ao) is the free-space propagation constant, and Z,
is the free-space wave impedance.

In particular, for r= a one obtains

~~(a,z) = R IHz(a,z) (2a)

~~(a,z) = – R1lHz(a, z) (2b)

in which R * and R 11denote the integral operators defined

by (l). The continuity condition for the electric field

tangential to the surface r= a requires that

or

R IIlz(a,z) + R ‘IHz(a,z) =0. (3b)

The integral equation (3b) is the basic equation from

which both the resonant frequency and the field distribu-

tion will be found by a procedure similar to the method of

moments [13].

Let {~} denote an infinite set of testing functions,

complete in the interval [0, L’]. It may be shown that (3b)

is equivalent to the following infinite set of equations:

(R IHz(a,z) ~) +( R1lHj(a,z) *)=0 (4)

where j=l,2,3,. . . and () denotes the inner product.

The unknown magnetic Hz(a, z) may be expressed in

terms of the functions {+,}:

where Ci are coefficients to be determined and {@i} is a set

of functions complete in the interval [0, L’]. The substitu-

tion of (5) into (4) results in the infinite set of homoge-

neous linear equations of the general form

i C,[(R’@,,~) +{RII@,,~)]=O, j=l,2,3, ” ““ . (6)
j=]

A nontrivial solution for Ci exists only if the determinant

of the set (6) equals zero. Thus the final equation for the

resonant frequency can be written as

det [W]=O (7)

where the elements of the matrix [W] are given by

wv={R1@i $>+ <R I1@i +). (8)

Once the resonant frequency is found from (7), the set

of linear equations (6) can lbe solved for c, to determine
the field Hz(a, z) from (5). Consequently, the electric field
in the whole region under consideration can be de-

termined from (1).

The exact solution is obtained as the matrix [W] dimen-

sion tends to infinity. Neglecting the terms for i,j >n

results in an approximate solution. Thus any given ac-

curacy can be obtained by appropriate choice of n.

According to the general features of Weinstein’s varia-

tional method, the consecutive expansion of the matrix

[W] dimension n yields a monotonically increasing

sequence of approximations. In other words, any ap-

proximate solution provides a lower bound for the true

resonant frequency. That is,

fi’)<fiz)< . . . <flu )... <f, (9)

where jO is the exact resonant frequency, and &) is the

approximate solution of (7) for i,j < n.

III. NUMERICAL RESULTS

We shall compute the resonant frequency of the TE018

mode of the resonant structure, shown in Fig. 1, for the

case L1 = L2. Because of the symmetry of the problem it is

convenient now to move the origin of the coordinate

system along the z axis to the point z =(1 /2) L’, and to

analyze the resonant system in the interval [0,(1 /2)L +

Ll]. The function sets {@i} and {~} have been chosen to

be the same, and have the form

@k(z)=+.(z,=&cos(~(2k-I)z), k=l,2,3,

(lo)

where L’= L+ 2L1. Each member of the function set

matches the boundary conditions and the set is complete

for even functions. The Green’s functions for regions I

and II are given in the Appendix. Thus substituting (10) in

(8) one obtains

diagonal elements:

8(E, – l)2k: m—
x

a2L’ ~=1

(PmAi + Bi)(QmAi - B,)

(ii + Y?)(ii+ Y:)(~rn+ Qm)

(ha)

off-diagonal elements:

[

4 BiAJ – ~Ai J,(xi) II(Y,)
‘Q=z Y,2– YJ2 ‘IJO(X[) – Yt]O(Yi) 1

where, for k = i,j:

yk=(2k– l); Ak = COS (+

Bk = yk sin (y~~)
‘,=-
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TABLE I

THE COMPUTED FREQUENCY OF THE T~18 MODE VBRSUS

DIMENSION w OF m MATRJX [ W] FOR TH8 RESONATOR HAVING

D =7.99 mm, L=2.14 mm, L1/L =2.07,<, =36.2

n I 2 3 4 5

[6!!.]
75519 7.7195 77524 7.7578 %7503

n 6 7 8 9 10

[G&]
77583 7,75a4 7.7585 77585 77585

and

and hm is mth root of the equation JO(hma) = O,c, is the

relative dielectric constant of the sample, J. is the Bessel

function of the first kind, and 1., K. are modified Bessel

functions of the first and second kind, respectively,

For sufficiently large values of m, the terms of the

infinite series in (1 la) and (b) decrease as m‘7 and m – 5,

respectively. This fast convergence of both series allows

the accurate evaluation of the matrix elements.

Expressions (11 a) and (b) are valid for k. <yl, i.e., for

distances between conducting plates smaller than the half

of the free-space wavelength corresponding to the reso-

nant frequency of the structure. As pointed out earlier,

this case represents a closed-resonant system. As a result,

the Q factor of the resonator is infinite if the dielectric

losses are zero and the plates are perfectly conducting.

To illustrate the theory, the resonant frequencies of

several X-band cylindrical dielectric resonators which

have been previously investigated experimentally [3] were

computed. Since the value of n for a given computational

accuracy depends on the geometry, and is not known a

priori, the computations were performed for successive

values of n until the fractional change in the computed

resonant frequency was less than 10-5. For the cases

considered, this accuracy was obtained for values of n

between 8 and 10. An example of the numerical conver-

gence of method is shown in Table I. A comparison

between the resonant frequencies of the TE018 mode com-

puted by three different approximate methods, this

method, and the experimentally obtained data are shown

in Table II. The agreement between the accurate solution

and the experimental data is within the estimated ac-

curacy of the experimental data [3]. The resonant

frequencies computed using a magnetic-wall waveguide

model [5] are seen to be about 4– 10 percent smaller than

the measured values. On the other hand, the dielectric

waveguide model [6] and its modification [3] is seen to
result in errors up to 7 and 3.5 percent, respectively. The

approximate method of Konishi et al. has been evaluated
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Fig. 2. The distribution of the H= field component of the T&l$ mode

at the surface r= a and at r = O for the resonator of Table I (D= 2a =
7.99 mm, L=2, 14 mm, L1/L =2.07, <,= 36.2).

TABLE II
Tm MEASURED AND COMPUTED RESONANT FREQUENCIES (’H&a

MODE, STRucrum ASm FIG. 1,LI = ~, C,= 36.2)

fo [GHZ]

L, computed

[m:] [m;] -i - %,
ref ref ref th!s

[5] [6] [3] method [3] ~

4.06 5.15 0.568 10.09 10.86 1082 1050 10.48

603 4.16 0.820 742 8.31 820 7.94 7.94

5.98 295 I 36 8.03 9.16 8.94 861 8.64

602 214 207 870 10.08 9.71 9.33 9.40

799 214 207 716 838 796 776 779

for the dielectric sample in free space [15], for which twr

method cannot be directly applied. However, it has been

shown by Itoh and Rudokas [6] that the method of

Konishi et al. gives good agreement with their dielectric

waveguide model.

The distribution of the Hz field component (for r ~=O

and r = a) was computed in accordance with this new
method (see (5)) for the resonator of Table I. A graph of

this field is shown in Fig. 2. Note that Hz(a) changes its

sign along z. Therefore, the magnetic field distribution in

the resonator for the TEola mode is similar to the field

shown schematically in Fig. 3(c). For comparison, the

magnetic field distributions resulting from the magnel,ic-

wall waveguide model Fig. 3(a) and the dielectric wave-

guide model Fig. 3(b) are also shown.

Table III provides some further insight into the depen-

dence of the computed resonant frequency on different

parameters of the structure shown in Fig. 1 (compare [3]1).
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(

Fig. 3. Comparison between the TI&a-mode magnetic field distribu-
tions resulting from the magnetic wall waveguide model (a) [5] and the
dielectric waveguide model (b) [6] with the distribution in the real
resonator (c).

TABLE 111
THE COMFUTED VALUES OF (j@)2~ IN [GHz ocm]zx I&’ FOR

DIFFERENT VALIJSS OF D/L, L1/L, ●,

AppENDIx

Using Friedman’s method [14], the Green’s function for

the region I is found to be of the following form:

m .l,(lz#’).12(/zmr’)
G1(r, r’,z,z’) = + ~ G~(z,z’) (Al)

a m=l J~(h~a)

where G~ is the one-dimensional Green’s function given

IV. CONCLUSIONS by

The analytical method presented in this paper allows, t71m(z)t72m(z’)

for the first time, the determination of the resonant
GM(z,z’) = ~ , for z <z’ (A2)

frequencies and the field distributions of cylindrical-
m

dielectric resonators with arbitrarily small error. A de-
glm(z’)g2m(z)

G~(z,z’) = ~ , for z >z’ (A3)

tailed outline of this method for the T~18 mode has been m

given. This mode is the most important one in practical and

{

Om cosh (Zf~Z), for O<z<~L

gl??sz) =
o~ cosh (~umL) cosh [Om(Z–~L)] +u~ sinh (~ZJmL) sinh [o~(z– ~L)], for ~L<z <Ll+ *L

{

Um sinh [om(L1+~L–z)], for ~L<z<~l+~L

g2m(z) = (AS)
Mmcosh [rJm(~L-Z)] Sid (qnLJ+IYm Cosh (vmLl) Sifi [um(~L–z)], for O<z<~L.

applications of these resonators. The numerical calcula- All the symbols were defined previously in the text.

tions performed show that not only is the method com- The Green’s function for region II is derived in a

mutationally practical, but also support the claimed 3.5 similar way under the condition kO<yi (or L’< ~~). It

percent accuracy of the modified dielectric waveguide means that there is no radiation of electromagnetic energy

model [3]. The computed field distribution of the TE018 from this resonant structure. The function G Ir has the

mode shows that the cross-sectional field distribution f~rm

2 m COS (yjZ) COS (yjZ’)

[

Jo (y’)] (Yi)Kl ~r ‘KO(Yi)ll(~r)]Kl (~r’)J ‘or ‘<r’
G1*(r,r’,z,z’) = — ~ (A6)

L’ i=, Ko(yi)
[~o(yi)Kl(~~)+~ O(yi)~l(~~)]K(~r), for r >r’.

changes strongly along the z axis. This fact is of impor- All the symbols were defined previously in the text.

tance in the study of the interaction of the dielectric

resonator with a ferrite semiconductor device, or other, ACKNOWLEDGMENT
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Design of Microwave GaAs MESFET’S for
Broad-Band Low-Noise Amplifiers

HATSUAKI FUKUI, SENIOR MEMBER, IEEE

Abstract-As a basis for designing GSAS MESFET’S for broad-band

low-noise mnpfMe~ tbe fundarnentaf relationships between basic device

parmnete~ sod two-port noise parameters are investigated in a semiem-

pfrfcaf manner. A set of four noise parameters are shown as sfmple

functfons of equivalent circuit elements of a GaAs MESFET. Each

element fs then expressed in a simple anafytfcai form with the geometrical

and material parameters of this device. Thus practical expressions for the

four noise parameters are developed in terms of the geometrical and

nmterfsf parameters.

Among the four noise parameters, the rnfnfmum noise figure Finn, and

equfvafent noise resistance R., are considered crucial for broad-band

Iow-nofse arnpfffiem. A low Rn corresponds to less sensitivity to input

rnismatc~ and can be obtained with a short heavily doped thin active

channel. Such a high channel doping-twtbickness (N/a) ratio has a

potential of producing high power gain, but is contradictory to obtaining a

low Ftin. Thmeforq a compromise in choosing N and a is necmsary for

beat overaif amplifier performance. Foor nnrnerfcai examples are given to

show optfrnfsatfon pmceseea.

I. INTRODUCTION

T HE GaAs Schottky-barrier gate field effect transis-

tors (GaAs MESFET’S) have demonstrated excellent
noise and gain performance at microwave frequencies
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through K band [1]. The excellent microwave performance

of GaAs MESFET’S is certainly related to their channel

properties. GaAs MESFET’S to be used for broad-band

low-noise amplifier applications, must have special re-

quirements on their channel properties for optimum per-

formance. The purpose of this paper is to investigate the

fundamental relationships between the noise and small-

signal properties, and the basic channel parameters of

GaAs MESFET’S. This information should be useful as a

basis for device design.

II. REPRESENTATION OF NOISE PROPERTIES

A. Noise Parameters

From the circuit point of view, the GaAs MESFET can

be treated as a black box of noisy two port. The noise

properties of such a black box are then characterized by a

set of four noise parameters in the binomial form [2]. A

derivation of this form can be written as

[

~=~ + g (%s-%)2+(X,,-XOP)2
mm R=, 1 (1)

R;+X* OP
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